If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+168x+105=0
a = 7; b = 168; c = +105;
Δ = b2-4ac
Δ = 1682-4·7·105
Δ = 25284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{25284}=\sqrt{196*129}=\sqrt{196}*\sqrt{129}=14\sqrt{129}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(168)-14\sqrt{129}}{2*7}=\frac{-168-14\sqrt{129}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(168)+14\sqrt{129}}{2*7}=\frac{-168+14\sqrt{129}}{14} $
| -13+f=1 | | 20w+10=10(w+5) | | 4(3x+9)=19x+21-7x+15 | | x=7x+4x+x-180 | | -2(6x-1)+8x=8+2(5x-5) | | 22d=-6 | | 60.84+b=316.84 | | 4(x+9)-4=95-3x | | 14g−9g−3g=10 | | Y=3/x^2 | | 4(x=9)-4=95-3x | | -3c=-51 | | 10=3f-4.3 | | 69=450x-30 | | -10(s+3)=-67 | | a+(4.41)=8.41 | | 5u+2-3(-4u-2)=2(u-1) | | 8(r+1)=2r+38 | | v−-46=85 | | -2y+5=2+4y+1 | | 2(a-3)=a+4 | | 1/5(30+15x)=3+2x | | v−–46=85 | | 3x(x-4)+21(x-4)=0 | | x–7=‐12 | | x^2+3x+8=-3x-3 | | (x+7)(3x-2)=(x+7)(x-6) | | 12(a-3)=8a+4 | | 1.8g-11=0.83 | | 7(y-1)-5=-3(-7y+6)-6y | | 2/7(x-2)=2x+2 | | m-71=-46 |